From SpaceElevatorWiki.com
Jump to navigationJump to search


(Make sure you have mercurial and relevant fortran compilers, etc. installed)

Then type:

hg clone http://hg.sharesource.org/gtoss

Inside the "SE Dynamics Exploration Runs" directory there are 35 runs doing all kinds of space elevator analysis.

GTOSS Documentation

Getting started documentation is here: File:Getting Started with GTOSS.pdf

Full Docs are located here: http://keithcu.com/GTOSS%20Reference%20Docs.zip

Ribbon Dynamics

The space elevator is a challenging dynamics problem. It reaches through a gravity well, has a very unique aspect ratio, is in an environment with wind, passing gravity wells, solar wind pressure, ascending climbers and a moving anchor. An extensive study was undertaken by David Lang to simulate the system from deployment through operation. The results of those studies are below.


Also see http://home.comcast.net/~GTOSS/GTOSS_and_Space_Elev.html

File:Dyn HB Final pdf.pdf: Large compilation of David Lang's Space Elevator dynamics work. (10.2Meg PDF) - This document will be split and referenced.

Paper_Lang_Aero.pdf : Paper on Aerodynamic Response to Atmospheric Wind (PDF)

File:Paper Lang Climber Transit.pdf: Paper on Dynamic Response to Climber Transits (PDF)

File:Paper Lang GEO Deploy.pdf: Paper on the Dynamics of GEO-Based Construction Deployment (PDF)

ATMOSPHERIC WIND RESPONSE (Deflection distances are generally magnified & time is accelerated)

Note, these winds are very high, and are not typical of the space elevator geographical location

File:Lang Movie Low.avi: AVI movie: Stop-time animation with Low altitude view and atmospheric density depiction

File:Lang Movie Full.avi: AVI movie: Stop-time animation of entire elevator length (with horizontal response scale greatly magnified)

WAVE PROPAGATION VIEWED AT RIBBON HIGH ABOVE EARTH (Deflection distances are generally magnified & time is accelerated)

Note: this wave originates at the ground in response to a planned base-movement

: QUICKTIME movie, Horizontal scale is greatly magnified

Note: the above QT movie was made using the application SpaceAnimator, created by Paul Snow

(you can contact Paul in the Seattle area at "psnow10@comcast.net", phone: 425 466-1405)

For those interested in working with GTOSS please contact Brad Edwards at brad_edwards@yahoo.com. The GTOSS program is being added to this site and will be made available to individuals with the background knowledge to use it. The code is extremely complex as are the input parameters and interpretation of the output results.