OpenSpace 4: Difference between revisions

From SpaceElevatorWiki.com
Jump to navigationJump to search
No edit summary
No edit summary
Line 51: Line 51:
Generally, the atmosphere has got no clear boundary to space since the atmospheric pressure and density gradually decreases by growing altitude. However, according to the international definition the formal boundary lies at the altitude of 100 kilometers, therefore jump from space must be occurred at this altitude or a bit higher. Undoubtedly, such jump will require different conditions.
Generally, the atmosphere has got no clear boundary to space since the atmospheric pressure and density gradually decreases by growing altitude. However, according to the international definition the formal boundary lies at the altitude of 100 kilometers, therefore jump from space must be occurred at this altitude or a bit higher. Undoubtedly, such jump will require different conditions.


First of all, no airplane, helicopter or the gondola of a balloon is able to carry passenger (sky diver) to such altitude, therefore a suborbital rocket/spacecraft will be needed, for example like the '''SpaceShipOne''' that has been recently used for winning the '''X-Prize''' in 2004 year, the other option implies using the Space Elevator (we discuss this option thoroughly below). A space-suit with some Oxygen supply (for at least 1-2 hours) will be also needed. The spacesuit must meet specific requirements since that altitude and acceleration 9.8 m/sec2 will cause the fact that the any object falling from such altitude will enter the atmosphere very quickly and this circumstance from its side will lead to heating object’s surface. Of course the temperature in this case will not be as high as in case of orbital entry. Here we are guiding by the manual written for the suborbital spacecrafts by Drs. Marti Sarigul-Klijn and Nesrin Sarigul-Klijn: ''“Flight Mechanics of Manned Sub-orbital Reusable Launch Vehicles with Recommendations for Launch and Recovery”'' [1] [2] that shows the correlation between the maximum temperature and deceleration experienced during the descent. It concludes that maximal temperature will be about 540 ° by Celsius due to the Mach 3.5 entry. As for the maximal g-load during fall it reaches 5.5 g at 21.3 km altitude (however we should note that these values cold vary due to vehicle’s shape). We are convinced that this g-load 5.5 g will not make any serious problems since it will be tolerable for the trained jumper; we know that the candidates for spaceflight should withstand much more g-loads that occur at descent. Generally during the lift-off the astronauts have to bear not more than 3g's but this lasts several minutes until the spacecraft reaches the orbit. In our case it will last much shorter time and after all such extreme kind of sport as parachuting (especially space-parachuting) is for well-trained persons only.
First of all, no airplane, helicopter or the gondola of a balloon is able to carry passenger (sky diver) to such altitude, therefore a suborbital rocket/spacecraft will be needed, for example like the '''SpaceShipOne''' that has been recently used for winning the '''X-Prize''' in 2004 year, the other option implies using the Space Elevator (we discuss this option thoroughly below). A space-suit with some Oxygen supply (for at least 1-2 hours) will be also needed. The spacesuit must meet specific requirements since that altitude and acceleration 9.8 m/sec2 will cause the fact that the any object falling from such altitude will enter the atmosphere very quickly and this circumstance from its side will lead to heating object’s surface. Of course the temperature in this case will not be as high as in case of orbital entry. Here we are guiding by the manual written for the suborbital spacecrafts by Drs. Marti Sarigul-Klijn and Nesrin Sarigul-Klijn: ''“Flight Mechanics of Manned Sub-orbital Reusable Launch Vehicles with Recommendations for Launch and Recovery”'' <sup>1</sup> <sup>2</sup> that shows the correlation between the maximum temperature and deceleration experienced during the descent. It concludes that maximal temperature will be about 540 ° by Celsius due to the Mach 3.5 entry. As for the maximal g-load during fall it reaches 5.5 g at 21.3 km altitude (however we should note that these values cold vary due to vehicle’s shape). We are convinced that this g-load 5.5 g will not make any serious problems since it will be tolerable for the trained jumper; we know that the candidates for spaceflight should withstand much more g-loads that occur at descent. Generally during the lift-off the astronauts have to bear not more than 3g's but this lasts several minutes until the spacecraft reaches the orbit. In our case it will last much shorter time and after all such extreme kind of sport as parachuting (especially space-parachuting) is for well-trained persons only.

Revision as of 10:00, 16 July 2011

Jump from space

Author: Mr. Giorgi Lobzhanidze

Address: Tbilisi, Republic of Georgia, Europe

Email: mailto:giorgi9@gmail.com


The parachuting is considered to be one of the most attracting, exciting and wonderful kinds of sport. From the beginning of the twentieth century it has been adopted by pilots for safe flight and later it became breathtaking kind of sport. Throughout the previous century there were developed many kinds of it, such as:

• Accuracy landing - Landing as close as possible to a target.

• BASE jumping - From buildings, antennas, bridges (spans) and cliffs (earth).

• Blade running - A kind of slalom with parachute.

• Big-ways - Formation skydiving with many people.

• Canopy formations - Making formations with other parachutists while under canopies. (Known also as canopy relative work or simply CRW)

• Canopy piloting - Also known as 'swooping'.

• Formation skydiving - Making formations during freefall. (Known also as relative work or simply RW)

• Freefall cinematography

• Freefall style

• Freeflying

• Freestyle skydiving

• Military Parachuting

• HALO/HAHO

• Treejumping

• Paraski

• Skysurfing - Skydiving with a board strapped to your feet.

• Wingsuit flying - Skydiving with a suit which provides extra lift.

In spite of such great choice for sky divers there probably could be one more, perhaps the very unusual kind of this sport-jump from the space.

Typically, parachuting occurs at the altitude of 4000 meters where the air is enough for breathing. In principle there is no difficulty to increase this altitude (and hence the time spent in Free-Fall), probably the sky diver will need to carry oxygen mask and warm cloth. However, we think that the space parachuting will be completely different thing.

Generally, the atmosphere has got no clear boundary to space since the atmospheric pressure and density gradually decreases by growing altitude. However, according to the international definition the formal boundary lies at the altitude of 100 kilometers, therefore jump from space must be occurred at this altitude or a bit higher. Undoubtedly, such jump will require different conditions.

First of all, no airplane, helicopter or the gondola of a balloon is able to carry passenger (sky diver) to such altitude, therefore a suborbital rocket/spacecraft will be needed, for example like the SpaceShipOne that has been recently used for winning the X-Prize in 2004 year, the other option implies using the Space Elevator (we discuss this option thoroughly below). A space-suit with some Oxygen supply (for at least 1-2 hours) will be also needed. The spacesuit must meet specific requirements since that altitude and acceleration 9.8 m/sec2 will cause the fact that the any object falling from such altitude will enter the atmosphere very quickly and this circumstance from its side will lead to heating object’s surface. Of course the temperature in this case will not be as high as in case of orbital entry. Here we are guiding by the manual written for the suborbital spacecrafts by Drs. Marti Sarigul-Klijn and Nesrin Sarigul-Klijn: “Flight Mechanics of Manned Sub-orbital Reusable Launch Vehicles with Recommendations for Launch and Recovery” 1 2 that shows the correlation between the maximum temperature and deceleration experienced during the descent. It concludes that maximal temperature will be about 540 ° by Celsius due to the Mach 3.5 entry. As for the maximal g-load during fall it reaches 5.5 g at 21.3 km altitude (however we should note that these values cold vary due to vehicle’s shape). We are convinced that this g-load 5.5 g will not make any serious problems since it will be tolerable for the trained jumper; we know that the candidates for spaceflight should withstand much more g-loads that occur at descent. Generally during the lift-off the astronauts have to bear not more than 3g's but this lasts several minutes until the spacecraft reaches the orbit. In our case it will last much shorter time and after all such extreme kind of sport as parachuting (especially space-parachuting) is for well-trained persons only.