Space Elevator

Dynamics Reference Manual

Done by David Lang in behalf of Institute for Scientific Research, Inc. In response to a Funding Contract from NASA, MSFC

12 April 2006

Contains Section 1 Only

TABLE OF CONTENTS

1.0 GENERAL DATA, PARAMETERS, FORMULAS 9
1.1 USEFUL NUMERICAL CONSTANTS. 9
1.1.1 General Physical Constants 9
1.1.2 Ribbon Attribute Constants 10
1.1.3 Elevator Dynamical Attribute Values. 11
1.1.3.1 Stress wave propagation speed 11
1.1.3.2 Transverse wave propagation speed 12
1.1.3.3 Effective end-to-end spring rate 12
1.1.3.4 Climber bobbing period 13
1.1.3.5 Climber bobbing amplitude 14
1.1.3.6 Climber acceleration potential 14
1.1.3.7 Transverse string mode periods 15
1.1.3.8 Pendulus libration periods 15
1.1.3.9 Coriolis effects 15
1.1.3.10 Ribbon tangential velocity 16
1.2 ATTRIBUTES OF "CONSTANT STRESS" SE DESIGN 17
1.2.1 Tapered Ribbon Properties Plots 18
1.2.2 Ribbon Taper Tabulated Properties 20
1.2.2.1 High resolution tabular data 20
1.2.2.2 Low resolution tabular data 23
1.3 NOMINAL TENSION AND STRESS STATES 25
1.4 GRAVITY-WELL SIMULATION CONVERGENCE 28
1.5 USEFUL FORMULAS FOR TETHER DYNAMICS 29
1.5.1 Definition of Symbols 29
1.5.2 From Classical Small Amplitude String Theory 29
1.5.3 Plumb-Bob (Yo-Yo) Oscillations 30
1.5.4 Elastic Diameter -vs- End-to-End Spring Rate 30
1.5.5 Damping Relationships 30
1.5.6 Segment -vs- Overall Effective-Attributes Relations 31
1.5.7 Stretched Uniform Spring with Intermediate Mass 31

2.0 GENERAL DYNAMICSERROR! BOOKMARK NOT

 DEFINED.2.1 LIBRATION DYNAMICSERROR! BOOKMARK NOTDEFINED.2.1.1 In-Plane Libration
\qquad Error! Bookmark not defined.
2.1.2 Out-of-Plane Libration
Error! Bookmark not defined.
2.1.3 Libration Coupling Error! Bookmark not defined.
2.2 LONGITUDINAL DYNAMICSERROR! BOOKMARK NOTDEFINED.2.2.1 Longitudinal Bobbing Mass ResponseError! Bookmark notdefined.
2.2.2 Longitudinal Stress ResponseError! Bookmark not defined.2.2.2.1 Longitudinal natural modes...Error! Bookmark not defined.2.2.2.2 Stress wave propagation........Error! Bookmark not defined.
2.3 TRANSVERSE WAVE DYNAMICSERROR! BOOKMARK NOTDEFINED.
2.3.1 In-Plane String Modes

\qquad
Error! Bookmark not defined.
2.3.2 Out-of-Plane String ModesError! Bookmark not defined. 2.3.3 Combined In and Out-of-Plane DeflectionsError! Bookmark not defined.
2.3.4 Transverse Wave Propagation......Error! Bookmark not defined.
2.4 GRAVITY-WELL SIMULATION CONVERGENCE. ERROR! BOOKMARK NOT DEFINED.
3.0 DEBRIS AVOIDANCEERROR! BOOKMARK NOT DEFINED.
3.1 DEBRIS ENVIRONMENTERROR! BOOKMARK NOTDEFINED.3.2 DEBRIS-AVOIDANCE TIMING ENVELOPES/RESPONSE...ERROR! BOOKMARK NOT DEFINED.3.3 SEA PLATFORM PERFORMANCE DATAERROR!BOOKMARK NOT DEFINED.
3.4 TRANSVERSE WAVES WITH CLIMBER ON RIBBON..ERROR! BOOKMARK NOT DEFINED.
3.5 TRANSVERSE WAVE DAMPING USING BASE MOTION ERROR! BOOKMARK NOT DEFINED.
4.0 AERODYNAMIC RESPONSEERROR! BOOKMARK NOT DEFINED.
4.1 ATMOSPHERIC CHARACTERIZATIONERROR! BOOKMARK NOT DEFINED.
4.2 OVERVIEW OF AERODYNAMIC RESPONSE ERROR!
BOOKMARK NOT DEFINED.
4.3 DETAILED RESPONSE TO A REFERENCE WIND

\qquad
ERROR! BOOKMARK NOT DEFINED.
4.3.1 A Typical Aerodynamic Load Distribution Response

\qquad
Error! Bookmark not defined.
4.3.2 Extreme Aerodynamic Loading ...Error! Bookmark not defined.
4.3.3 Typical Ribbon Deflection Response ShapesError! Bookmark not defined.
4.3.3.1 Deflections for un-occupied elevatorError! Bookmark notdefined.
4.3.3.2 Deflections with climber in low atmosphere

\qquad
Error!
Bookmark not defined.
4.3.3.3 Deflections with climber at LEOError! Bookmark not defined.
4.4 RIBBON HORIZONTAL DISPLACEMENT ERROR!
BOOKMARK NOT DEFINED.
4.4.1 Horizontal Displacement vs Wind Speed (Unoccupied)......Error!
Bookmark not defined.
4.4.2 Horizontal Displacement vs Wind Duration (Unoccupied) .Error!
Bookmark not defined.
4.4.3 Horizontal Displacement vs Ribbon Width (Unoccupied)...Error!
Bookmark not defined.
4.4.4 Horizontal Displacement vs Wind Speed (Climber in Atmos)
Error! Bookmark not defined.
4.4.5 Horizontal Displacement vs Wind Speed (Climber at LEO)Error! Bookmark not defined.

4.5 RIBBON DEPARTURE ANGLESERROR! BOOKMARK NOT DEFINED.

4.5.1 Departure Angle vs Wind Speed (Unoccupied)Error! Bookmark not defined.
4.5.2 Departure Angle vs Ribbon Width (Unoccupied)................Error! Bookmark not defined.
4.5.3 Departure Angle vs Wind Speed (Climber in Atmosphere). Error! Bookmark not defined.
4.5.4 Departure Angle vs Wind Speed (Climber at LEO) .Error! Bookmark not defined.
4.6 STRESS RELATED TO WIND RESPONSE
ERROR!
BOOKMARK NOT DEFINED.
4.6.1 Stress Profile vs Wind (Unoccupied)Error! Bookmark not defined.
4.6.2 Stress Profile vs Ribbon Width (Cat 0, Unoccupied) Error!
Bookmark not defined.
4.6.3 Stress Profile vs Wind (Climber in Atmosphere)Error!

Bookmark not defined.
4.6.4 Stress Profile vs Wind (Climber at LEO)Error! Bookmark not defined.

5.0 CLIMBER DYNAMICSERROR! BOOKMARK NOT DEFINED.
 5.1 LIBRATION RESPONSE TO CLIMBINGERROR! BOOKMARK NOT DEFINED.

5.2 LONGITUDINAL RESPONSE TO CLIMBER LIFTOFF ...ERROR! BOOKMARK NOT DEFINED.
5.3 LONGITUDINAL RESPONSE TO TRANSIT RESUME ...ERROR! BOOKMARK NOT DEFINED.
5.4 LONGITUDINAL RESPONSE TO CLIMBING ARREST .ERROR! BOOKMARK NOT DEFINED.
5.5 STRESS PROFILES RELATED TO CLIMBER ACTIVITY
\qquad6.0 CONSTRUCTION DEPLOYMENT DYNAMICSERROR! BOOKMARK NOT DEFINED.
6.1 OVERVIEW \qquad ERROR! BOOKMARK NOT DEFINED. 6.2 THE DEPLOYMENT VENUEERROR! BOOKMARK NOT DEFINED.
6.3 DEPLOYMENT STRATEGIESERROR! BOOKMARK NOT DEFINED.
6.4 RIBBON/DEPLOY-CRAFT SIMULATION CONFIGURATION ..ERROR! BOOKMARK NOT DEFINED.6.4.1 Initial Conditions of Simulation...Error! Bookmark not defined.
6.4.2 GEO-Craft Configuration Error! Bookmark not defined.6.4.2.1 GEO-craft control systemsError! Bookmark not defined.6.4.3 Deploy-Craft ConfigurationError! Bookmark not defined.6.4.3.1 Deploy-craft control systems.Error! Bookmark not defined.
6.4.4 Ribbon Configuration

\qquad
Error! Bookmark not defined.6.4.4.1 Tapered ribbon deployment topologyError! Bookmark notdefined.
6.4.4.2 Tether/Object topology Error! Bookmark not defined.6.4.4.3 System mass balance.............Error! Bookmark not defined.
6.5 NATURAL SYSTEM TENDENCIESERROR! BOOKMARKNOT DEFINED.
6.6 UNDER-EQUILIBRATED SYSTEM (FALL-DOWN) ERROR!
BOOKMARK NOT DEFINED.6.7 OVER-EQUILIBRATED SYSTEM (FLY-AWAY)
\qquad ERROR! BOOKMARK NOT DEFINED.
6.8 END-BODY LIBRATION CONTROL EFFECTS. ERROR!
BOOKMARK NOT DEFINED.
6.8.1 No Libration Control on Either Upper or Lower Craft

\qquad
Error! Bookmark not defined.6.8.2 No Libration Control on Lower Deploy-craftError! Bookmarknot defined.
6.8.3 No Libration Control on Upper GEO-craftError! Bookmark not defined.
6.9 VERTICAL/HORIZONTAL CONTROL COUPLING \qquad ERROR! BOOKMARK NOT DEFINED.
6.10 EFFECTS OF TENSION SENSOR FILTERING

ERROR! BOOKMARK NOT DEFINED.
6.11 SUCCESSFUL BALANCED DEPLOYMENT \qquad ERROR! BOOKMARK NOT DEFINED.
6.12 DISCUSSION AND CONCLUSIONSERROR! BOOKMARK NOT DEFINED.

7.0 ELEVATOR FAILURE MODE DYNAMICS
 \qquad ERROR! BOOKMARK NOT DEFINED.

7.1 GENERAL FAILURE RESPONSESERROR! BOOKMARK NOT DEFINED.

APPENDIX A: GTOSS OVERVIEWERROR! BOOKMARK NOT DEFINED.
APPENDIX B: GTOSS AERODYNAMICS MODEL.ERROR! BOOKMARK NOT DEFINED.
APPENDIX C: GTOSS CLIMBER SIMULATION..... ERROR! BOOKMARK NOT DEFINED. APPENDIX D: GTOSS RIBBON SIMULATION
\qquad ERROR! BOOKMARK NOT DEFINED. REFERENCES ERROR! BOOKMARK NOT DEFINED.

INTRODUCTION

This manual is a preliminary work aimed at providing a source of convenient dynamicsrelated information for those involved with all aspects of space elevator (SE) development and design. For some, this manual may serve as a primer of SE dynamics, for all, it is a source of specific constants, attributes and SE behaviors. This manual is a work in progress as much remains to be addressed as work proceeds on the project. Each section of the manual addresses a special aspect of information pertaining to the SE.

The dynamics attributes have been mostly derived from the time-domain simulation called GTOSS (Generalized Tethered Object Simulation). An outline of GTOSS is included (in Appendices A through D, etc) to allow the user to assess the pertinence of this simulation in providing such results for each aspect of SE dynamics. Related materials s re-organized and derived from these studies by the author appear in the papers listed among the references.

General Note: Some items below should be included for future efforts
a. Thermal response
b. Climber attitude dynamics
c. Ocean wave effects on longitudinal dynamics
d. Sun-Moon tidal effects
e. Aerodynamic pull-down response
f. Breakage debris-footprints
g. General pull-down response

1.0 GENERAL DATA, PARAMETERS, FORMULAS

1.1 USEFUL NUMERICAL CONSTANTS

This section addresses physical constants typically used in SE design calculations; these are broken down into physical constants, and broadly dynamics-related attributes.

1.1.1 General Physical Constants

Below are physical constants frequently used in SE calculations. These data are presented in metric and English units.

Nom. Ribbon Length	$\begin{aligned} & =\mathbf{1 0 0 , 0 0 0} \mathbf{k m}=\mathbf{1 0}^{\mathbf{7}} \mathbf{~ m} \\ & =328,083,985=3.28083985 \times 10^{8} \end{aligned}$
Nom. Ballast Mass	$\begin{aligned} & =\mathbf{6 3 4}, \mathbf{2 7 9 . 7} \mathbf{~ k g} \\ & =43,462 \text { slugs } \\ & =1,398,348.5 \mathrm{lbm} \end{aligned}$
Earth Rotation rate	$=7.292115 \times 10^{-5} \mathrm{rad} / \mathrm{sec}$
Earth Rotation rate "squared"	$=5.3174943 \times 10^{-9} \mathrm{rad} / \mathrm{sec}^{2}$
"SE Book" Earth Radius (Re)	$\begin{aligned} & =\mathbf{6 3 7 8 . 0 0} \mathbf{k m}=\mathbf{6 , 3 7 8 , 0 0 0} \mathbf{~ m} \\ & =20,925,197=2.0925197 \times 10^{7} \mathrm{ft} \end{aligned}$
Nom. Total Ribbon Mass	$\begin{aligned} & =\mathbf{8 6 5 , 0 7 7} \mathbf{~ k g} \\ & =1,907,170=1.907170 \times 10^{6} \mathrm{lbm} \\ & =59,276.8=5.92768 \times 10^{4} \text { slugs } \end{aligned}$
Ribbon Modulus of Elasticity	$\begin{aligned} & =\mathbf{1 . 2 9 9 6} \times 1 \mathbf{1 0}^{\mathbf{1 1}} \mathbf{N} / \mathbf{m}^{\mathbf{2}} \text { (Pascals) } \\ & =188,500,00=1.885 \times 10^{8} \mathrm{psi} \end{aligned}$
Gravity Accel at Ballast radius	$\begin{aligned} & =\mathbf{0 . 0 3 5 2 2} \mathbf{~ m} / \mathbf{s e c}^{2} \\ & =0.11556 \mathrm{ft} / \mathrm{sec}^{2} \\ & =0.0036 \mathrm{~g} \text { 's } \end{aligned}$
Centrip. Accel at Ballast radius	$\begin{aligned} & =\mathbf{0 . 5 6 5 6} \mathbf{~ m} / \mathbf{s e c}^{2} \\ & =1.8558 \mathrm{ft} / \mathrm{sec}^{2} \end{aligned}$
Gravity Force on nom ballast	$\begin{aligned} & =\quad \mathbf{2 2 , 3 5 7} \mathbf{~ N} \\ & =5,026 \mathrm{lbf} \end{aligned}$
Centrif. Force on nom ballast	$\begin{aligned} & =\mathbf{3 5 8 , 7 7 5} \mathbf{N} \\ & =80,656 \mathrm{lbf} \end{aligned}$

Net force to "swing" nom ballast $=\mathbf{3 3 6}, 419 \mathbf{N}$
$=75,630 \mathrm{lbf}$

$$
\begin{aligned}
\text { "Rearth/Ribbon Len" ratio } & =0.06378 \\
\sqrt{\operatorname{Re} / R_{L}} & =0.25255 \\
\text { Accel of Grav at GEO approx } & =\mathbf{0 . 3 0 4 8} \mathbf{~ m} / \mathbf{s e c}^{\mathbf{2}} \\
& =1.0 \mathrm{ft} / \mathrm{sec}^{2}
\end{aligned}
$$

Some related Parameter values as they appear in GTOSS

Accel Grav @earth surface $\quad=\mathbf{9 . 7 9 8 2 2 2} \mathbf{~ m} / \mathbf{s e c}^{2}$ $=32.1464 \mathrm{ft} / \mathrm{sec}^{2}$
Earth Revolution Period $\quad=86,164.1 \mathrm{sec}$
Nom. Radius vector to Ballast $=\mathbf{1 0 6 , 3 7 7 . 9 6} \mathbf{~ k m}$
$$
=10.637796 \times 10^{7} \mathrm{~m}
$$
$$
=349,009,071=3.4900971 \times 10^{8} \mathrm{ft}
$$
Nom. Earth Radius (Re) $\quad=\mathbf{6 3 7 8 . 1 6} \mathbf{~ k m}=\mathbf{6 , 3 7 8 , 1 6 0 . 1} \mathrm{m}$
$=20,925,722=2.0925722 \times 10^{7} \mathrm{ft}$

1.1.2 Ribbon Attribute Constants

All deductions are based on the following assumptions/ribbon properties:
With the exception of the total operational ribbon elongation (a value determined via GTOSS), these deductions are based on classical linear string theory and basic physics relationships, and thus only reflect ball-park values and should be applied with temperance.

Young's Modulus $(E)=\mathbf{1 , 0 0 0} \mathbf{G P a}\left(=10^{12} \mathrm{~N} / \mathrm{m}^{2}=1.45 \times 10^{12} \mathrm{psi}\right)$
Elastic (load bearing) Cross sect. at Ground $=\mathbf{3} \mathbf{~ m m}^{2} \quad\left(=3.00 \times 10^{-6} \mathrm{~m}^{2}=.00465 \mathrm{in}^{2}\right)$ Elastic (load bearing) Cross sect. at GEO $=7.68 \mathbf{~ m m}^{2}\left(=7.68 \times 10^{-6} \mathrm{~m}^{2}=.0119 \mathrm{in}^{2}\right)$

Stretched length of tapered Ribbon $=\mathbf{1 0 0 , 0 0 0} \mathbf{k m}\left(3.2808 \times 10^{8} \mathrm{ft}\right)$ Un-Stretched length of tapered Ribbon $\quad=\mathbf{9 5 , 2 9 2} \mathbf{~ k m}\left(=3.1264 \times 10^{8} \mathrm{ft}\right)$ Total Elongation of tapered Ribbon $=\mathbf{4 , 7 0 8} \mathbf{~ k m}(=15,446,000 \mathrm{ft}=2,925$ miles $)$

Note: this corresponds to an average strain of 4.9\% (data from GTOSS simulation)

Ribbon (CNT) intrinsic density $=\mathbf{1 . 3} \mathbf{~ g} / \mathbf{c m}^{\mathbf{3}}\left(1.3 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}=2.52 \mathrm{slug} / \mathrm{ft}^{3}=81.1 \mathrm{lbm} / \mathrm{ft}^{3}\right)$
Ribbon lineal-density $(@ G r o u n d)=\mathbf{0 . 0 3 8 7} \mathbf{g} / \mathbf{c m}(3.87 \mathrm{~kg} / \mathrm{km}=2.60 \mathrm{lbm} / 1000 \mathrm{ft})$
Ribbon lineal-density $(@ G E O)=\mathbf{0 . 0 9 9 7} \mathbf{g} / \mathbf{c m}(9.97 \mathrm{~kg} / \mathrm{km}=6.70 \mathrm{lbm} / 1000 \mathrm{ft})$
The term "Lift-off mass", refers to the total mass of the Crawler + Useful cargo. These calculations do not make a distinction between what portion of Lift-off mass is useful, and what is purely "crawler mechanism related". In particular, for practical operations, Lift-off mass may have to be notably less than the static ribbon tension of 20 tons (or $40,000 \mathrm{lbs}$); See items 3 thru 8 below.

1.1.3 Elevator Dynamical Attribute Values

Based on the above data, we can make the following deductions:

1.1.3.1 Stress wave propagation speed

Transmission Speed of Stress disturbance (longitudinal ribbon wave)

$$
\begin{aligned}
& =\mathbf{2 7 , 7 0 0} \mathbf{~ m} / \mathbf{s} \\
& =\mathbf{2 7 . 7} \mathbf{~ k m} / \mathbf{s} \\
& =91,000 \mathrm{ft} / \mathrm{sec} \\
& =62,000 \mathrm{mph}
\end{aligned}
$$

This parameter depends only upon the material's modulus and intrinsic density; the above values would be very approximate due to the composite nature of the ribbon, and are based on CNT intrinsic properties alone.

Point of Interest: this is the fastest that mechanical information can be transmitted within the CNT ribbon material; for instance, if the ribbon were cut at the ground, it would take on the order of 1 hour for the Ballast mass to get the message, that is, for the zero stress condition at the anchor to propagate up to the ballast. GTOSS has verified this end-to-end transmission time (transmission time is a function of the "number of nodes" and "integration interval" for discrete simulation, approaching the theoretical value as both progress towards "finer" values).

1.1.3.2 Transverse wave propagation speed

Speed of propagation of Transverse ribbon waves

$$
=6766 \mathrm{~m} / \mathrm{s}
$$

$=6.77 \mathrm{~km} / \mathrm{s}$
$=22,200 \mathrm{ft} / \mathrm{s}$
$=15,136 \mathrm{mph}$

This parameter depends upon the tension and lineal-density of the ribbon material.
Point of Interest: If you throw an instantaneous "transverse kink" in the ribbon at the ground, it will take on the order of $\mathbf{4 5} \mathbf{~ s e c}$ to reach LEO regions (ie. 300 km altitude), about 1.5 hrs to reach GEO, and about $\mathbf{4} \mathbf{~ h r s}$ to reach the ballast mass (making a round trip excursion of a transverse wave reflected off the ballast mass be 8 hrs).

Point of Interest: Comparing propagation speeds of Longitudinal versus Transverse ribbon waves, it is seen that the lowest string-mode frequency is about $\mathbf{1 / 4}$ that of the lowest longitudinal-mode frequency.

Point of Interest: Avoiding LEO debris may be practical via SE base-motion. If a repositioning of the order of a 100-200 meters is sufficient, then this might be attainable via a sliding mechanism on the base station as opposed to moving the anchor platform itself, thus providing quick response. This, combined with the short time to LEO would allow very quick response to a debris detection event. Thus ocean-based stations, and/or over-the-horizon radar debris detection may be a viable scheme.

Point of Interest: Avoiding near GEO debris will require some planning; however, objects in the GEO regime are moving much slower, and spend far more time visible above the radar horizon thus it is less likely to sneak up on the SE as is possible uncharted LEO objects.

1.1.3.3 Effective end-to-end spring rate

Effective End-to-End spring rate (Keff) at the Anchor

$$
\begin{aligned}
& =.039 \mathbf{N} / \mathbf{m}(1 \mathrm{~N}=>26 \mathrm{~m}) \\
& =\mathbf{3 9} \mathbf{N} / \mathbf{k m} \\
& =.0027 \mathrm{lb} / \mathrm{ft}(1 \mathrm{lb}=>370 \mathrm{ft})
\end{aligned}
$$

This is based on operational Tension/Total Elongation (from GTOSS data), and also
using classical strain-modulus relationships (with average ribbon attributes at Ground and GEO), yielding about the same result. Notes examine implications of Keff .

Point of Interest: Based on a classical uniform string calculation, the value of Keff is bounded below by a calculation corresponding to a "uniform ribbon" based on the elastic attributes at the anchor (yielding a Keff $=.030 \mathrm{~N} / \mathrm{m}$); the upper bound corresponds to elastic attributes at GEO (yielding a $\operatorname{Keff}=.047 \mathrm{~N} / \mathrm{m}$).

Point of Interest: The above calculation of static Keff, does not mean that such a spring rate would necessarily be realized under significantly Transient conditions, since the classical end-to-end spring rate is based on the entire length of a string instantaneously elongating to participate in resisting applied load. This is because it would take an hour for a strain gradient induced by load (at the earth) to distribute itself along the entire length of the ribbon, thus time become a factor. However, if the system transients were left to damp-out, then the final static elongation would be consistent with this type calculation of Keff.

Point of Interest: Consider an SE with an attached payload whose weight is just equal to the static tension (ie. an essentially neutrally buoyant elevator); now imagine that you could step onto the payload, adding your weight to it, and further suppose that you and the payload were free to translate downward freely (say, over a deep pit in the ground); your added weight would cause the payload to ultimately sink down about 17,000 meters (ie. $55,000 \mathrm{ft}$ or about 10 miles).

1.1.3.4 Climber bobbing period

Liftoff Mass Bobbing Period

Period $=1 /$ Frequency $=\mathbf{1 . 0 4} \mathbf{h r s}$

This parameter has been simplistically calculated based on a simple 2 DOF dual-mass spring system (assuming the spring is massless) and a lift-off mass of $16,490 \mathrm{~kg}$ (18 tons $=36,360 \mathrm{lbm}$).

Point of Interest: If one had, say, an $\mathbf{1 8}$ ton Liftoff mass attached to a $\mathbf{2 0}$ ton-tensioned SE ribbon, and then cut the restraining link between the payload and ground, then a yo-yo bobbing-type oscillation would ensue, with the payload bounding upwards towards the ballast for about $1 / 2 \mathrm{hr}$, then bounding back downward, this whole process taking a little over an hour for a classical spring-mass system. Related SE phenomenon could actually take somewhat longer because as the liftoff mass rises, gravity decreases and centripetal acceleration increases, both effects attributing to a greater altitude (amplitude) being realized than predicted by a simple spring mass system.

Point of Interest: Simulations of this using GTOSS indeed exhibits these tendencies (with the above characteristic frequency appearing). In this case, the resultant response was not constrained, resulting in elevator and lift-off mass both moving away from the earth. Thus, other complex non-linear behaviors manifest themselves, such as: motion of ballast and lift-off masses as whole away from and through the earth's inverse square gravity field, excitation of longitudinal modes due to a sharp change in tension as the anchor was severed, finite times of longitudinal wave transmission/and strain-relaxation, etc.

1.1.3.5 Climber bobbing amplitude

Liftoff Mass Bobbing-Mode Amplitude

$$
\begin{aligned}
& =\mathbf{8 2 2}, 000 \mathrm{~m} \\
& =822 \mathrm{~km} \\
& =510 \mathrm{miles}
\end{aligned}
$$

This amplitude depends upon the relationship of the static tension to the Lift-off mass. The calculation uses the same data as in 1.1.3.4 above, except, simplistically assumes a single mass-spring system (ie. the ballast mass is assumed "fixed", otherwise the motion is unbounded).

Point of Interest: While this oscillation amplitude would likely never be realized in practice, rather it is included to promote an understanding of the compliant nature of the climber-ribbon system.

1.1.3.6 Climber acceleration potential

Payload Bobbing-Mode Immediate Acceleration Potential

$=1.08 \mathrm{~m} / \mathrm{sec}^{2}$
$=0.11 \mathrm{~g}$

Point of Interest: This value is arbitrarily based on the free release of an 18 ton Liftoff mass on a ribbon tensioned at 20 tons (the acceleration thus being the ratio of 2 tons/ 18 tons). Given the low spring rate of the ribbon, a free-release represents the maximum practical acceleration attainable at liftoff.
1.1.3.7 Transverse string mode periods

Classical 1 ${ }^{\text {st }}$ and $2^{\text {nd }}$ String-Mode Transverse Periods (approx)

$1^{\text {st }}$ mode period $=7.5 \mathrm{hrs}$
$2^{\text {nd }}$ mode period $=\mathbf{3 . 8} \mathrm{hrs}$

1.1.3.8 Pendulus libration periods

Pendulus In-Plane Period (approx)

$=5.65$ days
$=135.6 \mathrm{hrs}$

Pendulus Out-of-Plane Period (approx)

$=0.98$ days
$=23.95 \mathrm{hrs}$

1.1.3.9 Coriolis effects

Coriolis Acceleration:

The following table quantifies the Coriolis acceleration associated with certain rates of traversal of the elevator Ribbon, and provides typical related force associated with a Climber mass of $\mathbf{1 6 , 4 9 0} \mathbf{~ k g}$ ($\mathbf{1 8}$ tons $=\mathbf{3 6 , 3 6 0} \mathbf{~ l b m}$).

Traverse Rate $(\mathrm{m} / \mathrm{s})$	Traverse Rate $(\mathrm{km} / \mathrm{hr})$	Coriolis Acc $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	Effec. Force (N)	Effec. Force (lbf)
50	180	.0073	134	30
100	360	.0146	328	60
200	720	.0292	656	120

Point of Interest: Consider the classical "Clothes-Line" effect (force resolution) in which the tension in a line is employed to equilibrate a normal load by way of deflecting the "clothes-line" (a tangent of small angle effect). If a line is under $178,000 \mathrm{~N}(40,000 \mathrm{lbf})$ of tension, then a 0.04 deg deflection would equilibrate a normal force of $267 \mathrm{~N}(60 \mathrm{lbf})$; this corresponds to a reverse effective Coriolis force of a $100 \mathrm{~m} / \mathrm{s}$ traversal rate.

For the earth's rotation rate, the Coriolis relationship used is:

$$
\boldsymbol{A}_{\text {cor }}=1.46 \times 10^{-4} \dot{\boldsymbol{R}}\left(\mathrm{~m} / \mathrm{s}^{2}\right)
$$

1.1.3.10 Ribbon tangential velocity

Tangential Velocity at GEO and Ballast Altitudes:

$$
\begin{array}{lll}
@ \text { GEO } & \mathrm{V}_{\mathrm{T}} & =\mathbf{2 , 5 8 0} \mathbf{~ m} / \mathrm{s} \\
& & =8,460 \mathrm{ft} / \mathrm{s} \\
\text { @ Ballast } & \mathrm{V}_{\mathrm{T}} & =\mathbf{7 2 9 2} \mathbf{~ m} / \mathbf{s} \\
& & =23,900 \mathrm{ft} / \mathrm{s}
\end{array}
$$

Point of Interest: This is tangential velocity relative to the anchor point. Note also that V_{T} at the Ballast is of the order of the low earth orbit speed.

1.2 ATTRIBUTES OF "CONSTANT STRESS" SE DESIGN

The classic problem of SE design is to achieve the most efficient use of ribbon material; thus, ideally, no section of ribbon is ever under or over-utilized, meaning that nominally, each point on the ribbon experiences the same level of stress, that level being the nominal operating stress with an assumed factor or safety of 2 for example. Typically values of operating stress for the ribbon have been quoted in the $50-60$ giga-Pascal range. Thus material.

Point of Interest: Common Scotch tape if it were made of material capable of sustaining 60 GPa stress, could suspend two Cadillac automobiles ($11,000 \mathrm{lbs}$).

The intrinsic technical problem that has historically confronted the SE is been the fact that it must suspend not only the weight of a payload, but more significantly, the weight of itself. Every ribbon particle below GEO altitude creates net force down, and above GEO, a net force upward. GEO then becomes the point at which an SE ribbon would experience the greatest force, and thus have the greatest cross-sectional area; thus proceeding in either direction from GEO, an maximally efficient ribbon would taper ever smaller. The relationship governing the ribbon's cross sectional area as a function of altitude to achieve this efficiency (uniform stress) is well known, and involves both the material density and strength in exponential form. This leads to the exponentially tapered ribbon design, with maximum width at GEO, tapering to lesser widths at both the ground and the ballast mass. Such design takes into account both inverse square earth gravity as well as linearly altitude-dependent centrifugal force.

It is this resulting dual tapered ribbon profile that is used within GTOSS to generate the dynamic responses summarized in this handbook. More details on the GTOSS simulation of the tapered ribbon are found in Appendix D

Thus, if one designs the ribbon taper properly to produce uniform material efficiency, and then simulates the SE in an environment properly representing planetary and dynamic effects, then, the resulting stress profile (ie. stress as a function of altitude along the ribbon) should so manifest uniformity. This was done with GTOSS, and the result is shown in the plot below:

1.2.1 Tapered Ribbon Properties Plots

This uniform stress plot (above) results from the interplay of the ribbon's design profile for density, exponentially tapered elastic cross sectional area, and modulus that was used within GTOSS (shown in the figures below). The slight droop in the stress curve near the earth can be attributed to approximation errors associated with curve-fitting the ribbon profile's taper gradient near the earth.

Based on the elastic cross sectional area profile and a nominal value of ribbon material's bulk density of $1.3 \mathrm{gm} / \mathrm{cm}^{3}$, the lineal density profile shown below was derived for use in GTOSS.

Page 19

1.2.2 Ribbon Taper Tabulated Properties

All data below is consistent with that provided by Dr. Bradley Edwards, even though the data is presented below at different levels of resolution.

1.2.2.1 High resolution tabular data

High resolution Tabular data: Earth's Surface to GEO altitude ("Radius" is the distance from the center of the earth to a point on the ribbon).

Radius (m)	$\begin{gathered} \text { Tension } \\ \left(\mathrm{N} / \mathrm{m}^{2}\right) \end{gathered}$	Elastic Area $\left(\mathrm{m}^{2}\right)$	Ribbon mass (kg)
6378000	$1.95 \mathrm{E}+05$	$3.01 \mathrm{E}-06$	0
7378000	$2.29 \mathrm{E}+05$	$3.52 \mathrm{E}-06$	3908.9
8378000	$2.58 \mathrm{E}+05$	$3.97 \mathrm{E}-06$	8484.7
9378000	$2.85 \mathrm{E}+05$	4.38E-06	13652.1
10378000	$3.08 \mathrm{E}+05$	$4.73 \mathrm{E}-06$	19342.6
11378000	$3.28 \mathrm{E}+05$	5.05E-06	25496.1
12378000	$3.46 \mathrm{E}+05$	$5.33 \mathrm{E}-06$	32059.9
13378000	$3.63 \mathrm{E}+05$	5.58E-06	38988.6
14378000	$3.77 \mathrm{E}+05$	5.80E-06	46242.6
15378000	$3.90 \mathrm{E}+05$	6.00E-06	53787.6
16378000	$4.02 \mathrm{E}+05$	$6.18 \mathrm{E}-06$	61593.4
17378000	$4.13 \mathrm{E}+05$	$6.35 \mathrm{E}-06$	69633.9
18378000	$4.22 \mathrm{E}+05$	6.49E-06	77885.7
19378000	$4.31 \mathrm{E}+05$	$6.63 \mathrm{E}-06$	86328.3
20378000	$4.39 \mathrm{E}+05$	6.75E-06	94943.3
21378000	$4.46 \mathrm{E}+05$	$6.86 \mathrm{E}-06$	103714.4
22378000	$4.52 \mathrm{E}+05$	6.95E-06	112626.9
23378000	$4.58 \mathrm{E}+05$	7.04E-06	121667.3
24378000	$4.63 \mathrm{E}+05$	$7.12 \mathrm{E}-06$	130823.8
25378000	$4.68 \mathrm{E}+05$	7.20E-06	140085.3
26378000	$4.72 \mathrm{E}+05$	$7.26 \mathrm{E}-06$	149441.9
27378000	$4.76 \mathrm{E}+05$	$7.32 \mathrm{E}-06$	158884.3
28378000	$4.79 \mathrm{E}+05$	7.38E-06	168404.1
29378000	$4.83 \mathrm{E}+05$	$7.42 \mathrm{E}-06$	177993.5
30378000	$4.85 \mathrm{E}+05$	7.47E-06	187645.2
31378000	$4.88 \mathrm{E}+05$	$7.51 \mathrm{E}-06$	197352.6
32378000	$4.90 \mathrm{E}+05$	7.54E-06	207109.5
33378000	$4.92 \mathrm{E}+05$	$7.57 \mathrm{E}-06$	216909.9
34378000	$4.94 \mathrm{E}+05$	7.59E-06	226748.4
35378000	$4.95 \mathrm{E}+05$	$7.62 \mathrm{E}-06$	236619.9
36378000	$4.96 \mathrm{E}+05$	$7.63 \mathrm{E}-06$	246519.6
37378000	$4.97 \mathrm{E}+05$	$7.65 \mathrm{E}-06$	256442.9
38378000	$4.98 \mathrm{E}+05$	$7.66 \mathrm{E}-06$	266385.5
39378000	$4.98 \mathrm{E}+05$	$7.67 \mathrm{E}-06$	276343.4
40378000	$4.99 \mathrm{E}+05$	$7.67 \mathrm{E}-06$	286312.7

High Resolution Tabular data: GEO altitude to nominal Ballast altitude.

Radius (m)	Tension $\left(\mathrm{N} / \mathrm{m}^{2}\right)$	Elastic Area (m^{2})	Ribbon mass (kg)
41378000	$4.99 \mathrm{E}+05$	$7.68 \mathrm{E}-06$	296289.8
42378000	$4.99 \mathrm{E}+05$	7.68E-06	306271.1
43378000	$4.99 \mathrm{E}+05$	$7.68 \mathrm{E}-06$	316253.4
44378000	$4.99 \mathrm{E}+05$	$7.67 \mathrm{E}-06$	326233.5
45378000	$4.98 \mathrm{E}+05$	7.67E-06	336208.5
46378000	$4.98 \mathrm{E}+05$	$7.66 \mathrm{E}-06$	346175.3
47378000	$4.97 \mathrm{E}+05$	7.65E-06	356131.3
48378000	$4.96 \mathrm{E}+05$	7.64E-06	366073.9
49378000	$4.95 \mathrm{E}+05$	7.62E-06	376000.4
50378000	$4.94 \mathrm{E}+05$	$7.61 \mathrm{E}-06$	385908.5
51378000	$4.93 \mathrm{E}+05$	7.59E-06	395795.8
52378000	$4.92 \mathrm{E}+05$	7.57E-06	405660.1
53378000	$4.91 \mathrm{E}+05$	7.55E-06	415499.2
54378000	$4.89 \mathrm{E}+05$	7.53E-06	425311.1
55378000	$4.88 \mathrm{E}+05$	$7.50 \mathrm{E}-06$	435093.7
56378000	$4.86 \mathrm{E}+05$	$7.48 \mathrm{E}-06$	444845.1
57378000	$4.84 \mathrm{E}+05$	$7.45 \mathrm{E}-06$	454563.5
58378000	$4.82 \mathrm{E}+05$	7.42E-06	464247.2
59378000	$4.80 \mathrm{E}+05$	7.39E-06	473894.2
60378000	$4.78 \mathrm{E}+05$	7.36E-06	483503.1
61378000	$4.76 \mathrm{E}+05$	7.33E-06	493072.2
62378000	$4.74 \mathrm{E}+05$	$7.30 \mathrm{E}-06$	502599.9
63378000	$4.72 \mathrm{E}+05$	7.26E-06	512084.8
64378000	$4.70 \mathrm{E}+05$	7.23E-06	521525.3
65378000	$4.67 \mathrm{E}+05$	7.19E-06	530920.3
66378000	$4.65 \mathrm{E}+05$	$7.15 \mathrm{E}-06$	540268.2
67378000	$4.63 \mathrm{E}+05$	$7.12 \mathrm{E}-06$	549567.8
68378000	$4.60 \mathrm{E}+05$	$7.08 \mathrm{E}-06$	558817.8
69378000	$4.57 \mathrm{E}+05$	7.04E-06	568017.1
70378000	$4.55 \mathrm{E}+05$	7.00E-06	577164.5
71378000	$4.52 \mathrm{E}+05$	$6.95 \mathrm{E}-06$	586258.8
72378000	$4.49 \mathrm{E}+05$	$6.91 \mathrm{E}-06$	595299.1
73378000	$4.46 \mathrm{E}+05$	$6.87 \mathrm{E}-06$	604284.2
74378000	$4.44 \mathrm{E}+05$	6.82E-06	613213.1
75378000	$4.41 \mathrm{E}+05$	$6.78 \mathrm{E}-06$	622085.0
76378000	$4.38 \mathrm{E}+05$	$6.73 \mathrm{E}-06$	630898.8
77378000	$4.35 \mathrm{E}+05$	$6.69 \mathrm{E}-06$	639653.8
78378000	$4.32 \mathrm{E}+05$	$6.64 \mathrm{E}-06$	648348.9
79378000	$4.29 \mathrm{E}+05$	6.59E-06	656983.5
80378000	$4.26 \mathrm{E}+05$	6.55E-06	665556.7
81378000	$4.22 \mathrm{E}+05$	$6.50 \mathrm{E}-06$	674067.9
82378000	$4.19 \mathrm{E}+05$	$6.45 \mathrm{E}-06$	682516.2
83378000	$4.16 \mathrm{E}+05$	$6.40 \mathrm{E}-06$	690900.9
84378000	$4.13 \mathrm{E}+05$	6.35E-06	699221.6
85378000	$4.10 \mathrm{E}+05$	$6.30 \mathrm{E}-06$	707477.4

High Resolution Tabular data: GEO altitude to Nominal Ballast altitude (continued)

Radius (m)	Tension $\left(\mathrm{N} / \mathrm{m}^{2}\right)$	Elastic Area $\left(\mathrm{m}^{2}\right)$	Ribbon mass (kg)
86378000	$4.06 \mathrm{E}+05$	$6.25 \mathrm{E}-06$	715667.8
87378000	$4.03 \mathrm{E}+05$	$6.20 \mathrm{E}-06$	723792.3
88378000	$4.00 \mathrm{E}+05$	$6.15 \mathrm{E}-06$	731850.4
89378000	$3.96 \mathrm{E}+05$	$6.10 \mathrm{E}-06$	739841.4
90378000	$3.93 \mathrm{E}+05$	$6.04 \mathrm{E}-06$	747765.0
91378000	$3.89 \mathrm{E}+05$	$5.99 \mathrm{E}-06$	755620.7
92378000	$3.86 \mathrm{E}+05$	$5.94 \mathrm{E}-06$	763408.0
93378000	$3.82 \mathrm{E}+05$	$5.88 \mathrm{E}-06$	771126.6
94378000	$3.79 \mathrm{E}+05$	$5.83 \mathrm{E}-06$	778776.2
95378000	$3.76 \mathrm{E}+05$	$5.78 \mathrm{E}-06$	786356.2
96378000	$3.72 \mathrm{E}+05$	$5.72 \mathrm{E}-06$	793866.5
97378000	$3.68 \mathrm{E}+05$	$5.67 \mathrm{E}-06$	801306.7
98378000	$3.65 \mathrm{E}+05$	$5.61 \mathrm{E}-06$	808676.6
99378000	$3.61 \mathrm{E}+05$	$5.56 \mathrm{E}-06$	815976.0

High Resolution Tabular data: Nominal Ballast altitude to Beyond.

Radius (m)	Tension $\left(\mathrm{N} / \mathrm{m}^{2}\right)$	Elastic Area $\left(\mathrm{m}^{2}\right)$	Ribbon mass (kg)
100378000	$3.58 \mathrm{E}+05$	$5.51 \mathrm{E}-06$	823204.5
101378000	$3.54 \mathrm{E}+05$	$5.45 \mathrm{E}-06$	830310.5
102378000	$3.51 \mathrm{E}+05$	$5.40 \mathrm{E}-06$	837448.4
103378000	$3.47 \mathrm{E}+05$	$5.34 \mathrm{E}-06$	844463.4
104378000	$3.44 \mathrm{E}+05$	$5.29 \mathrm{E}-06$	851406.9
105378000	$3.40 \mathrm{E}+05$	$5.23 \mathrm{E}-06$	858278.9
106378000	$3.36 \mathrm{E}+05$	$5.18 \mathrm{E}-06$	865079.2
107378000	$3.33 \mathrm{E}+05$	$5.12 \mathrm{E}-06$	871807.8
108378000	$3.29 \mathrm{E}+05$	$5.07 \mathrm{E}-06$	878464.6
109378000	$3.26 \mathrm{E}+05$	$5.01 \mathrm{E}-06$	885049.6
110378000	$3.22 \mathrm{E}+05$	$4.95 \mathrm{E}-06$	891562.8
111378000	$3.18 \mathrm{E}+05$	$4.90 \mathrm{E}-06$	898004.2
112378000	$3.15 \mathrm{E}+05$	$4.84 \mathrm{E}-06$	904373.8
113378000	$3.11 \mathrm{E}+05$	$4.79 \mathrm{E}-06$	910671.6
114378000	$3.08 \mathrm{E}+05$	$4.73 \mathrm{E}-06$	916897.8
115378000	$3.04 \mathrm{E}+05$	$4.68 \mathrm{E}-06$	923052.5
116378000	$3.01 \mathrm{E}+05$	$4.62 \mathrm{E}-06$	929135.6
117378000	$2.97 \mathrm{E}+05$	$4.57 \mathrm{E}-06$	935147.4
118378000	$2.93 \mathrm{E}+05$	$4.52 \mathrm{E}-06$	941088.0
119378000	$2.90 \mathrm{E}+05$	$4.46 \mathrm{E}-06$	946957.6
120378000	$2.86 \mathrm{E}+05$	$4.41 \mathrm{E}-06$	952756.2
121378000	$2.83 \mathrm{E}+05$	$4.35 \mathrm{E}-06$	958484.1

High Resolution Tabular data: Nominal Ballast altitude to Beyond (continued)

Radius (m)	Tension $\left(\mathrm{N} / \mathrm{m}^{2}\right)$	Elastic Area $\left(\mathrm{m}^{2}\right)$	Ribbon mass (kg)
122378000	$2.79 \mathrm{E}+05$	$4.30 \mathrm{E}-06$	964141.6
123378000	$2.76 \mathrm{E}+05$	4.24E-06	969728.7
124378000	$2.72 \mathrm{E}+05$	4.19E-06	975245.8
125378000	$2.69 \mathrm{E}+05$	$4.14 \mathrm{E}-06$	980693.0
126378000	$2.65 \mathrm{E}+05$	4.08E-06	986070.7
127378000	$2.62 \mathrm{E}+05$	4.03E-06	991379.2
128378000	$2.59 \mathrm{E}+05$	3.98E-06	996618.6
129378000	$2.55 \mathrm{E}+05$	3.92E-06	1001789.3
130378000	$2.52 \mathrm{E}+05$	3.87E-06	1006891.6
131378000	$2.48 \mathrm{E}+05$	$3.82 \mathrm{E}-06$	1011925.9
132378000	$2.45 \mathrm{E}+05$	$3.77 \mathrm{E}-06$	1016892.4
133378000	$2.42 \mathrm{E}+05$	$3.72 \mathrm{E}-06$	1021791.6
134378000	$2.38 \mathrm{E}+05$	$3.67 \mathrm{E}-06$	1026623.8
135378000	$2.35 \mathrm{E}+05$	$3.61 \mathrm{E}-06$	1031389.3
136378000	$2.32 \mathrm{E}+05$	$3.56 \mathrm{E}-06$	1036088.5
137378000	$2.28 \mathrm{E}+05$	$3.51 \mathrm{E}-06$	1040721.8
138378000	$2.25 \mathrm{E}+05$	$3.46 \mathrm{E}-06$	1045289.7
139378000	$2.22 \mathrm{E}+05$	$3.41 \mathrm{E}-06$	1049792.5
140378000	$2.19 \mathrm{E}+05$	$3.36 \mathrm{E}-06$	1054230.7
141378000	$2.16 \mathrm{E}+05$	3.32E-06	1058604.7
142378000	$2.12 \mathrm{E}+05$	3.27E-06	1062914.9
143378000	$2.09 \mathrm{E}+05$	3.22E-06	1067161.7
144378000	$2.06 \mathrm{E}+05$	$3.17 \mathrm{E}-06$	1071345.7
145378000	$2.03 \mathrm{E}+05$	$3.12 \mathrm{E}-06$	1075467.3
146378000	$2.00 \mathrm{E}+05$	$3.08 \mathrm{E}-06$	1079526.9
147378000	$1.97 \mathrm{E}+05$	$3.03 \mathrm{E}-06$	1083525.1
148378000	$1.94 \mathrm{E}+05$	2.98E-06	1087462.3
149378000	$1.91 \mathrm{E}+05$	$2.94 \mathrm{E}-06$	1091339.1
150378000	$1.88 \mathrm{E}+05$	$2.89 \mathrm{E}-06$	1095155.8

1.2.2.2 Low resolution tabular data

This data was derived from GTOSS table input, and represents a minimum-data optimal fit of the ribbon taper (assuming a quadratic interpolation for intermediate points). The format of this data is characterized by Region definitions; thus a Region is defined by the Region-Length (as opposed to radius from earth center), and there is then a bounding value of a parameter at each end of the Region. Note that the sum of the Region lengths nominally would total to the ballast altitude.

Low resolution Tabular data:

Earth's surface to nominal Ballast altitude by Regions
Note: this represents an optimal approximation to the ribbon length-varying parameters, assuming quadratic interpolation is used evaluate properties intermediate to the region boundaries.

Lineal Density (kg/km)	$\begin{aligned} & \text { Cross Section } \\ & \left(\mathrm{mm}^{2}\right) \end{aligned}$	Region Δ Length $\Delta \mathrm{L}(\mathrm{km})$
3.9089	3.010	<= value at Earth
		3048
5.6550	4.3825	
		3048
6.8902	5.3298	
		3048
7.8054	5.9981	
		4572
8.7057	6.7012	
		4572
9.2712	7.1393	
		3048
9.5242	7.3331	
		6096
9.8442	7.5666	
		6096
9.9707	7.6659	
		6096
9.9558	7.6659	
		6096
9.8368	7.5666	
		9144
9.5242	7.3331	
		9144
9.0778	6.9957	
		15240
8.1849	6.2656	
		12192
7.3366	5.6398	
		8656.32
6.7265	5.1689	$<=$ value at Ballast

1.3 NOMINAL TENSION AND STRESS STATES

The graphs below illustrate the tension and stress profiles associated static positioning of a $18,000 \mathrm{~kg}$ climber at various altitudes. From this, similar tension profiles for an object at other altitudes become readily apparent.

The two graphs below provide a low altitude magnified composite view of tension and stress profiles for all the above cases.

1.4 GRAVITY-WELL SIMULATION CONVERGENCE

To properly simulate a space elevator configuration using a discrete nodal approach, one must pay attention to the spatial-convergence of the simulation as it pertains to the "gravity well" (ie. inverse-square planetary gravity model). The graph below depicts (for the Earth) the tension at the anchor point as a function of the number of "uniformlyspaced" nodes used to simulate the elevator ribbon.

It can be seen that for node-counts greater than 200, the earth's gravity-well is being fairly well acknowledged. For lesser node counts, simulation results may still be acceptable, depending upon the degree to which total-available anchor tension must be fully realized.

Note also, that non-uniform distributions of lesser node-counts (for instance 100 nodes from ground to $10,000 \mathrm{~km}$, then 50 nodes between there and ballast, etc) may suffice to fully acknowledge the gravity well.

1.5 USEFUL FORMULAS FOR TETHER DYNAMICS

1.5.1 Definition of Symbols
$\sigma=$ Stress $\quad \beta=$ Material intrinsic damping factor (sec)
$\varepsilon=$ Strain $\quad \delta=$ End-to-End tether elongation
$\mathrm{T}=$ Tension $\quad \mathrm{K}_{\text {eff }}=$ Effective end-to-end spring constant
$\mathrm{L}=$ Length
$\mathrm{K}_{\mathrm{Deff}}=$ Effective end-to-end damping constant
$\mathrm{E}=$ Young's modulus
d = Elastic diameter
A = Elastic cross sectional area
$\rho=$ Volumetric mass density
$\rho_{\mathrm{L}}=$ Lineal mass density ($=\frac{\rho}{\boldsymbol{A}}$)

1.5.2 From Classical Small Amplitude String Theory

Transverse: Natural Frequencies $\mathrm{f}^{\top} \mathrm{n}$

$$
\begin{aligned}
f_{n}^{\top} & =\frac{n}{2 L} \sqrt{\frac{T}{\rho_{L}}} \\
& =\frac{n}{2 L} S^{\top}
\end{aligned}
$$

Longitudinal: Natural Frequencies $f^{\llcorner } n$

$$
\begin{aligned}
\mathrm{f}_{\mathrm{n}}^{\mathrm{L}} & =\frac{\mathrm{n}}{2 \mathrm{~L}} \sqrt{\frac{\mathrm{AE}}{\rho_{\mathrm{L}}}} \\
& =\frac{\mathrm{n}}{2 \mathrm{~L}} \mathrm{~S}^{\mathrm{L}}
\end{aligned}
$$

Wave Propagation Speed S^{\top}

$$
S^{\top}=\sqrt{\frac{T}{\rho_{\mathrm{L}}}}
$$

Stress Propagation Speed S^{L}

$$
\begin{aligned}
S^{L} & =\sqrt{\frac{E}{\rho}} \\
& =\sqrt{\frac{A E}{\rho_{L}}}
\end{aligned}
$$

1.5.3 Plumb-Bob (Yo-Yo) Oscillations

Plumb Bob (Longitudinal) Frequency (2 masses and a spring):

$$
f_{n}^{\text {roro }}=\frac{1}{2 \pi} \sqrt{\frac{K_{\text {eff }}\left(M_{1}+M_{2}\right)}{M_{1} M_{2}}}
$$

1.5.4 Elastic Diameter -vs- End-to-End Spring Rate

Relationship of Equivalent Elastic Diameter to the tether Effective End-to-End SpringRate Constant:

$$
\begin{aligned}
& d=\sqrt{\frac{4 L K_{\mathrm{eff}}}{\pi E}} \\
& K_{e f f}=\frac{A E}{L}
\end{aligned}
$$

1.5.5 Damping Relationships

Definition of Equivalent End-to-End Damping Constant $K_{D_{\text {eff }}}: \quad T_{D_{\exp }}=K_{D_{\text {eff }}} \frac{d \delta}{d t}$ Where: $\mathrm{T}_{\mathrm{Dexp}}$ is the tension experienced at attach points due to damping alone.

Definition of Material Intrinsic Damping Factor $\beta: \quad \sigma=E\left(\varepsilon+\beta \frac{d \varepsilon}{d t}\right)$

Relationship between Equivalent End-to-End Damping constant and the conventional Spring-Rate constant.

$$
\mathrm{K}_{\mathrm{Deff}}=\beta \mathrm{K}_{\mathrm{eff}}
$$

1.5.6 Segment -vs- Overall Effective-Attributes Relations

Relationship between Equivalent End-to-End constants, and an N segment discrete (bead modeled) tether:

$$
\begin{aligned}
& \mathrm{K}_{\text {seg }}=\mathrm{NK} \mathrm{Neff} \quad \text { Where: } \mathrm{K}_{\text {seg }}=\text { Seg-equivalent to the End-to-end spring constant } \\
& \mathrm{K}_{\mathrm{D}_{\text {seg }}}=\mathrm{NK}_{\mathrm{D}_{\text {eff }}} \quad \text { Where: } \mathrm{K}_{\mathrm{D}_{\text {seg }}}=\text { Seg-equivalent to the End-to-end damping constant }
\end{aligned}
$$

1.5.7 Stretched Uniform Spring with Intermediate Mass

This addresses the effect upon oscillation frequency of positioning a concentrated mass, \mathbf{M}, at an intermediate distance \mathbf{x} from one end, along a stretched uniform spring of length \mathbf{L} and an End-to-End Effective spring rate of $\mathbf{K}_{\mathbf{E}}$. The applicability of this simplified model is to approximate Longitudinal Bobbing-Frequencies of a climber mass at any point on the elevator ribbon from ground to ballast.

The circular frequency ω is:

$$
\omega=\omega_{E} \sqrt{\frac{1}{\lambda(1-\lambda)}} \quad \text { with: } f=\frac{\omega}{2 \pi} \quad \text { and Period, } T=\frac{1}{f}
$$

$$
\text { where: } \lambda=\frac{\boldsymbol{x}}{\boldsymbol{L}} \quad \text { and, } \quad \omega_{E}=\sqrt{\frac{\boldsymbol{K}_{\boldsymbol{E}}}{\boldsymbol{M}}}
$$

Note that ω_{E} is simply the circular frequency of mass M , under the action of a single spring with spring constant $\boldsymbol{K}_{\boldsymbol{E}}$ (which is the lowest effective spring rate associated with the ribbon). The frequency ω_{E} would be that of the climber positioned near the anchor (or ballast), while assuming the (short) ribbon between the climber and anchor (or ballast) does not exist; ω_{E} would be the lowest longitudinal Bobbing frequency associated with the Climber and the elevator-ribbon-system; the longitudinal Bobbing frequency of the ballast being the lowest). Note that the frequency ω_{E} is NOT close to values of ω corresponding to small values of λ, as these frequencies could be quite high (due to the high spring rate of the short ribbon segment between the climber and either end). Values of ω corresponding to small values of λ may only manifest in piecewise fashion due to potential discontinuous non-linear slack-taut motion that may ensue with an actively bobbing climber near either end of the ribbon.

Below is shown a typical plot of Longitudinal Bobbing Period corresponding to values of λ spanning climber positions from the ground to the ballast for the nominal elevator configuration addressed in this handbook.

